Представитель Шуры Люберецкого в ЖЖ (brat_luber) wrote,
Представитель Шуры Люберецкого в ЖЖ
brat_luber

Categories:

Я добрый сегодня

Дошел до ближайшей разливайки и купил вкусного пива, поэтому вместо очередной записи “запретите им” будет немного полезных и даже местами добрых советов. А начну с того, что в ЖЖшной френдленте у [info]fritzmorgen увидел доклад Boston Consulting Group про то, как к 2025 году обустроить Россию (да, вот это и называется “внешним управлением”), а у [info]kouzdra – обсуждение учебника Куранта и Роббинса по математике. Ну так вот – раз я добрый, то не буду особо матерно комментировать вот эту картинку за авторством BCG:

competence

Доклад, по большей части, представляет собой обычный набор благоглупостей про “экономику знаний” – и как положено, утверждает, что “все большее проникновение алгоритмов и компьютерных решений будет вести к переориентации потребностей рынка труда на «человеческое в человеке»: творческое начало, культурные аспекты, индивидуальные и коллективные ценности, а также универсальные «компетенции XXI века», которые не смогут компенсировать цифровые технологии” – список этих “универсальных компетенций” представлен на рисунке. Как обычно, пишется что-то про “метапредметное” образование, которое должно развивать вот эти самые “универсальные компетенции”.

“Когнитивные” и “социально-поведенческие” навыки – это, пожалуй, то, что раньше называлось “воспитанием” – а вот про правый нижний угол картинки я бы хотел сказать отдельно. Под заголовком “цифровые навыки” перечислены следующие пункты:

  • программирование
  • разработка приложений
  • проектирование производственных систем
  • обработка и анализ данных

Можно, конечно, поворчать про то, почему эти навыки отнесены к “цифровым”, и что же тогда такое “аналоговые” навыки – но я хочу обратить внимание на то, что немалая часть современных модных “цифровых навыков” – это банальная математика (и чуть-чуть информатики) в объеме программы, скажем, среднего технического вуза, и без ее знания вы проиграете даже няшному котику (который в совершенстве владеет доброй половиной soft skills).

Можно ли понять несложный, в общем-то, учебник по модному нынче “глубокому обучению“, не владея матанализом и линейной алгеброй в объеме хотя бы пары семестров? Читатель, не знающий математики, “сломается” уже на словах “стохастический градиентный спуск”. Не менее модные “большие данные”? По большому счету, их “анализ” сводится к довольно элементарной статистике. В идеале, конечно, не лишним будет понимание, какие данные являются “большими”. Методы вроде Principal Components Analysis? В основе там лежит банальнейшая линейная алгебра.

Кстати, а готовы ли вы описать связь между евклидовой метрикой и нормальным распределением? А ведь она естественнейшим образом возникает, когда мы пользуемся методом наибольшего правдоподобия. Как, и таких слов не знаете? Чем вы тогда лучше котика?

А ведь это все лезет и в “чистую гуманитарщину”. Digital Humanities – слово, конечно, ругательное, и в приличном обществе вызывает снисходительные усмешки – но посмотрите хотя бы картинки отсюда:

dh-pca

https://handbuch.tib.eu/w/DH-Handbuch/Tools#Stilometrische_Textanalyse

Вроде бы предмет называется “компьютерная филология” – но без знания математики остается лишь пользоваться готовыми инструментами (даже без понимания их ограничений), чему по большей части и посвящен остаток главы. Циники от естественных наук уже предлагают гуманитариям заняться p-хакингом – “мы применяли к текстам различные методы анализа, пока на тридцатом заходе не нашли доказывающий, что Слово о полку Игореве написано Сократом, p < 0.05" (впрочем, я и без всякого p-хакинга готов доказать, что Тохтамыш сжег Белый дом в 1993 году).

Короче говоря - что делать? Мой ограниченный жизненный опыт подсказывает "нулевое" решение - закончить мехмат - пусть он "и вообще ни к чему не готовил“, но какой-то багаж знаний, позволяющий легко понимать вот эту всю “обработку и анализ данных”, после него остается даже сейчас. Можно попробовать это решение “упростить” – так что перечислю те области человеческого знания, без которых data science будет просто модным баззвордом.

Начну, пожалуй, с “чистой” математики. Сложно представить себе “анализ данных” без хотя бы базовых представлений о теории вероятностей и математической статистике. Не менее сложно (хотя это уже со стороны может показаться и не таким очевидным) – без владения линейной алгеброй. Тот же “метод главных компонент”, по сути, практически тривиален. Ну и разумеется – никуда не деться от математического анализа, пусть даже и в сильно сокращенном и урезанном виде. В общем, получается программа того, что во всяких говновузах называется “высшей математикой” (кажется, туда обычно входят еще и дифференциальные уравнения – ну и ладно) – только вот “сдать и забыть” это все не получится.

Но! Вся эта математика, если мы говорим о “цифровых технологиях”, довольно бесполезна – так что не надо забывать и о “цифровой грамотности” на пару с программированием. Не можешь рассказать, что происходит, когда в адресной строке браузера набираешь google.com и нажимаешь Enter – давай до свидания :) Не можешь написать на любом языке программирования код для перемножения двух матриц – аналогично. В “цифровую грамотность”, разумеется, стоит включить и понимание того, что такое “большие” данные, а заодно – и представления о вычислительной сложности. Если сократить это до какого-то разумно минимального объема – то, пожалуй, это ужмется до эквивалента пары семестров – изучения какого-нибудь языка программирования и курса по алгоритмам и структурам данных.

В общем, если вы не владеете математикой в объеме пары курсов средненького технического вуза, а компьютером владеете на уровне “печатаю двумя пальцами в Microsoft Word” – то ваше место в скором будущем займет несложный скрипт на Perl, робот или даже котик.

Запись опубликована в блоге Шуры Люберецкого. Вы можете оставлять свои комментарии там, используя свое имя пользователя из ЖЖ (вход по OpenID).

Subscribe

  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 0 comments